Введите длину большой и малой полуосей эллипса, укажите точность расчета и нажмите "Посчитать". Калькулятор выполнит расчет периметра эллипса (расчет приблизительный).

Калькулятор

Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек F1 и F2 этой плоскости есть величина постоянная, больше расстояния между F1 и F2.

Точки F1 и F2 называют фокусами эллипса, а расстояние между ними – фокусным расстоянием.

Проходящий через фокусы эллипса отрезок, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a.

Отрезок, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.

Точка пересечения большой и малой осей эллипса называется его центром.

Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.

Формулу периметра эллипса нельзя выразить при помощи простейших функций.

Расчет длины/периметра эллипса совсем не является тривиальной задачей, как можно было бы подумать.

Легко рассчитать длину окружности, по формуле

Но такой же простой подход совершенно не подходит для эллипса.

В точном выражении периметр эллипса можно выразить только через эллиптические функции вот по такой формуле

– большая полуось эллипса

В быту, конечно же используются приближеные формулы, о которых мы расскажем.

Одна из них выглядит вот так

В два раза более точные данные дает формула

И еще более точный периметр эллипса дает выражение

Но, все равно каковы бы не были формулы, они все равно только приближенно дают периметр эллипса.

Мы, с помощью точной формулы через эллиптический интеграл, получаем независимость от подобных ограничений, и получаем абсолютную точность, при любых значениях эллипса.

Решение примеров

Эллипс задан уравнением

Найти его периметр

Введем известные параметры a=2 и b=5 и получим результат

Уравнение эллипса
Эксцентриситет эллипса
Точный периметр эллипса

Почему в исходных данных, ввести можно только значения полуосей? По другим параметрам, что не считает?

Калькуляторы на этом сайте, в том числе и этот, не предназначены для замены Вашего мозга. Они лишь упрощают рутинные операции, или те операции где возможно ошибиться. И только.

Поэтому если Вы не можете например по эксцентриситету и одной из полуосей, вычислить вторую полуось , я лишь могу выразить сочуствие Вашим способностям. И математика и геометрия не Ваш конёк.

С другой стороны недостаток ума ваших способностей, легко компенсируется деньгами, тем людям, которые за Вас эту работу могут сделать.

Кроме этого есть калькулятор, который по двум точкам стоит каноническое уравнение, а также по любым другим пяти точкам может строить кривую второго порядка на плоскости. Этого на мой взгляд более чем достаточно.

Но в любом случае, если у читателя возникнет желание попросить автора сделать калькулятор по любым другим параметрам, в принципе это сделать можно.

Эллипс – это множество точек плоскости, для которых сумма расстояний до фокусов эллипса постоянна и больше расстояния между фокусами.

a , b – полуоси эллипса

О – центр эллипса

Длина эллипса (L) равна произведению суммы его полуосей ( a , b ) на число π: