Эта статья — 2 часть и логическое продолжение опыта разработки доступного адаптивного контроллера для охлаждения электровентилятора ВАЗ. (1 часть читаем по ссылке здесь)
Первый опыт был направлен, прежде всего, на то, что бы понять и оценить собственные возможности в разработке микроконтроллерного устройства для решения наболевшей у всех темы перегрева либо же надоедливого щелканья и гула под капотом.

Почти 10 месячный период эксплуатации самодельного контроллера на моей «десятке» показал просто отличные результаты: стрелка показателя ОЖ при любой температуре и дорожной обстановке (пробки, жара, дальняки в 600 и более км и т.д.), практически никогда не отклонялась от отметки в 90 градусов, что способствовало постоянной ровной работе двигателя и бортовой сети. После этого было решено продолжить разработку уже более качественного и функционального прототипа устройства, которое можно было бы адаптировать под другие авто, а так же вручную настраивать поддерживаемую температуру ОЖ.

В алгоритм работы нового контроллера лег всё тот же принцип, как и в первой версии: с помощью дополнительного датчика ОЖ читались пороговые значение температуры, при которых вентилятор плавно стартовал, разгоняясь при повышении и замедляясь при понижении температуры, и по достижении максимального порога температуры раскручивался на полную мощность (как при штатной сработке реле). Но теперь значения датчика температуры не «жестко» вписывались в прошивку, а появилась возможность множество раз программировать эти значения «на ходу» с помощью внешней кнопки, и светодиода, отображающего процессы настройки и режимы работы контроллера. При первом нажатии на кнопку, действующие температурные показания датчика записываются как пороговое значение запуска вентилятора, а по нажатию во второй раз – записывается порог максимальных оборотов. Значения остаются в энергонезависимой памяти микроконтроллера и при отключении питания данные сохраняются. Теперь можно калибровать любые значения температуры, даже обратные(для датчиков с положительным/отрицательным температурным коэффициентом), и использовать почти любые резистивные датчики. Такой подход поможет более четко регулировать температуру ОЖ как в теплый, так и в холодный сезоны.

Подключение к бортовой сети осталось прежним: контроллер с дополнительным датчиком включается параллельно штатной схеме, и никак не влияет на срабатывание реле электровентилятора ОЖ. («подключил и забыл»). Но нужно учитывать, что данный девайс будет работать только на авто, где вентилятор коммутируется «массой» а не «плюсом»! (тоесть подключен постоянный +12В по штатной схеме, а реле подключет массу). ВАЗ2110 в нашем случае – идеальный кандидат. Ну а так – вольтметр в помощь))

Теперь схему можно запитать от любых +12В «зажигания», например от «+12В форсунок», так как в прошивке реализована задержка включения в 4 секунды, для того, что бы успеть завести горячий двигатель, не давая сразу запуститься вентилятору и нагрузить бортсеть при включении зажигания.

Схему и готовую печатную плату я решил разработать и оставить в общем доступе на облачном сервисе для проектировки электронных схем (ссылка на проект)

Цель установки даннного девайса — уменьшить перегрев двигателя в теплое время года при движении в тянучках, пробках и.т.д.
Общеизвестно, что в семействе ВАЗ 2110-12 разбег между температурой стабилизации термостатом и точкой включения вентилятора по сигналу ЭБУ достаточно велик и доходит иногда до 15-20С. Что негативно сказывается на ресурсе системы охлаждения да и двигателя в целом.
Для серийного выпуска с разбросом параметров термостатов и датчиков (ДТОЖ) это вполне естесственно и технологично.
Ну а если индивидуально эту проблему можно минимизировать — то почему бы не сделать это.
Кроме того, немаловажен тот факт, что эффективность (теплоотдача) радиатора охлаждения напрямую зависит от скорости набегающего потока воздуха. И при его отсутствии (напр. стояние в пробке) практически равна НУЛЮ, вне зависимости от бренда радиатора и производительности помпы.
И это достаточно существенный аргумент в пользу пропорционального управления мощностью (производительностью) вентилятора.

Наконец-то дошли руки до установки девайса.
А предыстория такова — 2 года назад был собран ШИМ контроллер (аналоговый на TL494). Оттестирован, настроен. Немного поездил и снял для "перекомпоновки" в корпус. Так он и "завис"
А в начале лета драйвовчанин Артур arttrener подкинул ссылочку на аналогичное устройство, только уже на PIC контроллере. Честно говоря, самому не охота было писать, потому зацепился за готовое решение. Основа: разработка "Смерч-7" от "Турмалин-НН".
turmalinnn.narod.ru/Smerch/Smerch-7/Smerch-7.html

Протестировав прошивку и несколько доработав схему получилось довольно полезное и эффективное устройство. Прошивку тоже немного изменил, но это не суть важно.
Прошивка написана продуманно и грамотно! Достаточно интересный и результативный алгоритм контроля температуры с хорошей помехозащищенностью.

Теперь двигатель работает в узком диапазоне температур. Включение вентилятора — плавно и на минимальной мощности, температуру сдувает на УРА, не выходя даже на 70% мощности.
У стрелки на приборке теперь 2 "фиксированных положения" —
1. Точка стабилизации термостатом (87-89 град С) при наличии достаточного набегающего воздушного потока.
2. И чуть выше на 3-4 градуса (93-94 градС) стабилизация контроллером — вентилятор сдувает.

Контроллер работает успешно уже 2 недели, с учетом местного климата (+35 в тени) — в тянучках и пробках — стрелка приборки стоит как вкопанная. (93-94 град по БК).
В качестве "ходового испытания" пробовал "затяжной подъем" на 1-й скорости (+35 за бортом), обороты 2500-2700, скорость 12-15 км/ч. Результат — вентилятор уверенно и тихо "сдувает" избыток тепла.

Устройство в категории -"поставил и забыл" !
Собрано пока на макетке. В дальнейшем буду "окультуривать"
Частота ШИМ порядка 100 Гц. Негативных влияний и помех на другие устройства не обнаружено.
Один серьезный "минус" — вентилятра не слышно! 🙂

Контроллер подключен по питанию к розово-черному проводу, идущему к разъему жгута форсунок (+12 при включенном зажигании) и к датчику температуры на ГБЦ. Ну и, естественно, хорошая "масса"

Update 2018 август
По многочисленным просьбам — вариант выходного каскада с управлением по "+" вентилятора
Драйвер IR4427
выходной ключ IRF4905 или его аналоги

Почему быстрый старт вентилятора охлаждения неприемлем для автомобиля? Тут несколько ответов:

1. На бортовую сеть идет большая нагрузка (это проводка, аккумулятор, генератор);
2. Помимо предыдущего идет и большая физическая нагрузка на крепления вентилятора и его подшипник;
3. Приходится использовать необоснованно большой предохранитель, так как пусковой ток может составлять до 30А.

Теперь определимся с задачами, которые мы поставим перед собой:

1. Главная наша задача – создать, так сказать, соф-старт.
2. Для этого использовать только штатную проводку.
3. Ограничится уже имеющимися кнопками.
4. Изначально автомобиль не обладал реле включения вентилятора, поэтому исправим это.

Как устроено представленное устройство? На самом деле, это ШИМ генератор импульсов, который запускается и начинает генерацию импульсов постоянной частоты на третий выход с изменяющейся по времени шириной следования импульса.

Время ширины задается емкостью конденсатора С3. Эти импульсы следуют до драйвера полевого транзистора, под управлением которого находится мощность нагрузки выхода устройства. Диод, который установлен на выходе, служит для того, чтобы погасить обратные неприемлемые выбросы электродвигателя.

Для диода была использована диодная сборка Шотки с общим катодом. Полевик использован Р-канальный, по причине того, что он должен регулировать положительное напряжение. Если бы использовался N-канальный, то потребовалась бы переработка всей проводки, которая связана с охлаждением двигателя, а в наши задачи это не входит.

В представленном устройстве часть элементов выполнена навесными, а другая – прикреплена на печатную плату.

Рисовка карты производилась в ЛУТе, а травка – хлорным железом.

Приступаем к созданию устройства. Сначала нужно достать реле, разобрать его и извлечь все внутренности, оставив только клеммы.

Получается что-то вроде этого.

Отрезав все ненужное, приступим к навесному монтажу.

Навесной у нас будет вся правая часть схемы, то есть все, что выходит с 3 ножки NE555. Если паять это все на плате, то размеров платы вообще не хватит.

Навесную часть почти закончили.

Можно приступать и к самой плате. У меня самого вышла такая ситуация, что пришлось немного обрезать плату, чтобы транзистор и диоды корректно располагались за пределами платы. В конце статьи плата показана полной, так как ее модификацию под нужные размеры я оставил на потом.

Следующий шаг – впаиваем обрезанную плату в реле.

Напоследок осталось впаять перемычки и прикрепить радиатор.

Вот и все. Устройство уже готово. Теперь его нужно покрыть лаком или попробовать залить канифолью. Собранное устройство не требует никаких настроек и оно подойдет к любому электродвигателю, так как ее максимальный ток составляет 74А. Использованный контролер IRF4905 дешевый, его легко найти в любом магазине электротоваров.

Вот вам вид готового к работе устройства.