Площадь и периметр – две численные характеристики, часто используемые в геометрии. Для их вычисления применяют одни и те же параметры, но смысл конечных величин имеет принципиальные различия. На упаковке многих товаров указывается площадь или размеры сторон в виде A х B (если речь идет о товаре, одна из сторон которого имеет форму прямоугольника).

Определение

Площадь – величина, характеризующая размер поверхности, которую занимает геометрическая фигура.

Периметр – размер границ (контура) геометрической фигуры.

Понятия применимы для каждой геометрической фигуры и выражаются в различных единицах. Расчет периметра и площади определяется единицами измерения параметров, используемых для их вычисления: длин сторон, диаметра, высоты. В геометрии указанные параметры чаще всего измеряются в мм, см, м.

Сравнение

Периметр обозначается заглавной буквой P, используется при измерении многоугольников и определяется как сумма длин его сторон. Площадь обозначается буквой S и может быть использована как численная характеристика поверхности, имеющей различный контур, в том числе искривленный. Понятие «квадратура» частично отражает смысл площади, в основе которой положено измерение квадрата поверхности.

Простейший случай – квадрат. Длины его сторон равны, поэтому для вычисления периметра достаточно умножить одну сторону на 4. Формула выглядит так:

Р = a + a + a + a = a х 4, где а – сторона квадрата.

Для вычисления площади квадрата используется другая формула:

Пери́метр (др. -греч. περίμετρον — окружность, др. -греч. περιμετρέο — измеряю вокруг) — общая длина границы фигуры (чаще всего на плоскости). Имеет ту же размерность величин, что и длина. Иногда периметром называют границу геометрической фигуры.

Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры [1], неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Периметр фигуры обладает только одним параметром — протяжённостью, или длиной, выраженной в единицах длины: метр, ярд, аршин, локоть. Или производных от них: километр, сантиметр, дециметр.

Площадь фигуры обладает двумя параметрами — например, длиной и шириной, или радиусом и коэффициентом Пи, в зависимости от формы. Величина площади выражается в единицах в квадрате: квадратных метрах, гектарах, квадратных милях

Периметр и его определение

Периметром принято называть протяжённость границы плоской фигуры, состоящей из прямых отрезков, где начало каждого последующего примыкает к окончанию предыдущего.

Строго говоря, окружность тоже обладает периметром, но для криволинейных границ принято говорить о длине окружности, или длине дуги

Для определения длины периметра, необходимо измерить, или вычислить, длину каждой стороны фигуры, а затем суммировать полученные числа.

Площадь фигуры и её определение

Площадь простейших геометрических фигур определяется по формулам.

Площадь прямоугольника равна произведению длин сторон.
Площадь круга равна произведению квадрата радиуса на число Пи=3,1415
Свои формулы есть для треугольника, сектора, трапеции, параллелограмма.

Площадь сложных криволинейных фигур вычисляется интегралом. Взятие интеграла формулы, описывающей границу фигуры, даст в результате площадь. В этом и есть геометрический смысл интеграла — он вычисляет площадь, ограниченную графиком функции на заданном участке.

Сложная фигура, lkz которой нет общей формулы, для определения площади мысленно разбивается на простейшие фигуры. Площади простых фигур вычисляются и затем суммируются.

Периметр и площадь геометрической фигуры связаны и один параметр всегда может быть вычислен из другого с минимальными дополнительными данными.

  • 10 – 11 классы
  • Математика
  • 5 баллов

В чем различия и разница между площадью и периметром. с примерами.

“>